- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Akundi, Aditya (1)
-
Luna_Fong, Sergio A (1)
-
Otieno, Wilkistar (1)
-
Ravipati, Phani_Ram Teja (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Model-based systems engineering (MBSE) is being rapidly adopted in U.S. industries across various sectors. While practitioners and academics recognize many benefits of adopting MBSE, industries also report challenges such as limited tool expertise and a shortage of skilled personnel. Highlighting the difficulties in industry adoption of MBSE, prior research by the authors identified challenges such as tool limitations, knowledge gaps, cultural and political barriers, costs, and the level of customer understanding and acceptance of MBSE practices. Additionally, another study by the authors points out a gap between industry demands for MBSE skills in new hires and the current academic training programs. To further assess the MBSE industry’s workforce needs, this paper introduces a two-phase method for the Structured Extraction of MBSE competencies using large language models based on current workforce demands from LinkedIn job postings. Phase 1 involved extracting 1960 job descriptions from LinkedIn using the term “model-based systems engineer.” In phase 2, large language models (LLMs) employing deep transformer architectures were used to transform unstructured text into structured data. An AI agent was used as an autonomous software layer to manage every interaction between the raw dataset from Phase 1 and the LLM. Supported by the analyzed data, a competency framework is proposed that summarizes the tools, technical skills, and soft skills expected of a model-based systems engineer by the industry. The framework is designed to include core competencies shared across all MBSE roles, with specific competencies tailored for aerospace & defense, manufacturing and automotive, and software and IT sectors.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
